RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 129(171), Number 1, Pages 40–54 (Mi sm1807)

This article is cited in 1 paper

Representation of large numbers by ternary quadratic forms

E. P. Golubeva


Abstract: Assuming a nontrivial displacement of the zeros of Dirichlet $L$-functions with quadratic characters, the author obtains asymptotic formulas for the number of lattice points in regions on the surface $n=f(x,y,z)$ $(n\to\infty)$, where $f(x,y,z)$ is an arbitrary nondegenerate integral quadratic form, $n\ne n_1n_2^2$, and $n_1$ is a divisor of twice the discriminant of $f$. The cases of an ellipsoid, a two-sheeted hyperboloid, and a one-sheeted hyperboloid are examined in a uniform way.
Bibliography: 25 titles.

UDC: 511.3

MSC: Primary 11P21, 11E20, 11E36; Secondary 11D85, 11H55, 11H06

Received: 11.10.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 57:1, 43–56

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025