RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 129(171), Number 1, Pages 154–158 (Mi sm1812)

This article is cited in 12 papers

Generalized Lie nilpotent group rings

A. A. Bovdi, I. I. Khripta


Abstract: Let $KG$ be the group ring of a group $G$ over a ring $K$ with identity. The ring $KG$ is said to be Lie $T$-nilpotent if for every sequence $x_1,x_2,\dots,x_n,\dots$ of elements of $KG$ there is an index $m$ such that the Lie commutator $(\dots((x_1,x_2),x_3)\dots,x_m)=0$. It is proved that $KG$ is a Lie $T$-nilpotent ring if and only if $K$ is Lie $T$-nilpotent and one of the following conditions is satisfied: 1) $G$ is an Abelian group, or 2) $K$ is a ring of characteristic $p^m$ ($p$ prime), $G$ is a nilpotent group and its commutator subgroup is a finite $p$-group.
Bibliography: 3 titles.

UDC: 512

MSC: Primary 20C07; Secondary 16A22, 16A68

Received: 23.10.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 57:1, 165–169

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025