RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 129(171), Number 2, Pages 186–200 (Mi sm1815)

This article is cited in 15 papers

On the behavior, for large time values, of nonnegative solutions of the second mixed problem for a parabolic equation

A. V. Lezhnev


Abstract: The author studies the behavior, for large time values $t$, of a nonnegative solution of the second mixed problem for a uniformly parabolic equation
$$ \frac{\partial u(x,t)}{\partial t}=\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x,t)\frac{\partial u(x,t)}{\partial x_j}\biggr) $$
in a cylindrical domain $\Omega\times\{t>0\}$, where $\Omega$ is an unbounded domain in $\mathbf R^n$. It is shown that for a certain class of unbounded domains $\Omega$, the behavior of the solution of the problem as $t\to\infty$ is determined by the behavior, for large values of the parameter $R$, of the means of the initial function over the sets $\{x\in\Omega:|x-\xi|<R\}$, $\xi\in\Omega$, $R>0$.
Bibliography: 8 titles.

UDC: 517.9

MSC: 35K20, 35B40

Received: 24.04.1985


 English version:
Mathematics of the USSR-Sbornik, 1987, 57:1, 195–209

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024