RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 129(171), Number 4, Pages 473–493 (Mi sm1841)

This article is cited in 7 papers

Trivial bundles of spaces of probability measures

V. V. Fedorchuk


Abstract: It is proved that the probability measure functor $P$ carries open mappings $f\colon X\to Y$ of finite-dimensional compact metric spaces with infinite fibers $f^{-1}y$ into $Q$-bundles. If in addition the fibers $f^{-1}y$ do not have isolated points, then it is possible to drop the condition that $X$ be finite-dimensional. Also, necessary and sufficient conditions are given for the mapping $P(f)$ to be a trivial bundle with fiber homeomorphic to a Tychonoff cube in the case of a mapping $f$ onto a dyadic compactum.
Bibliography: 27 titles.

UDC: 515.12

MSC: Primary 46E27, 54E45, 55R10, 60B05; Secondary 28A33, 54B30, 54B35, 54C10, 54C55, 54C65, 54F45

Received: 23.01.1985


 English version:
Mathematics of the USSR-Sbornik, 1987, 57:2, 485–505

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025