RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 132(174), Number 3, Pages 304–321 (Mi sm1856)

This article is cited in 91 papers

On uniformization of Riemann surfaces and the Weil-Petersson metric on Teichmüller and Schottky spaces

P. G. Zograf, L. A. Takhtadzhyan


Abstract: A potential is constructed for the Weil–Petersson metric on the Teichmüller space $T_g$ of marked Riemann surfaces of genus $g>1$ in terms of the density of the Poincaré metric on the region of discontinuity of the corresponding normalized marked Schottky group. It is proved that the difference between the projective connections corresponding to the Fuchsian uniformization and the Schottky uniformization for a marked Riemann surface of genus $g>1$ is the $\partial$-derivative of this potential, and the Weil–Petersson symplectic form on Teichmüller space is the $\overline\partial$-derivative of the Fuchsian projective connection. The results establish how the accessory parameters of the Fuchsian uniformization and the Schottky uniformization of a Riemann surface are connected with the geometries of Teichmüller space and Schottky space.
Bibliography: 31 titles.

UDC: 517.9+512.7

MSC: Primary 30F10, 32G15; Secondary 11F67, 30F35

Received: 01.04.1986


 English version:
Mathematics of the USSR-Sbornik, 1988, 60:2, 297–313

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025