RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 1, Pages 29–58 (Mi sm186)

This article is cited in 2 papers

Spherical partial sums of the double Fourier series of functions of bounded generalized variation

M. I. Dyachenko

M. V. Lomonosov Moscow State University

Abstract: The spherical partial sums of the double Fourier series of functions in the Waterman classes are studied. The main result of the paper is as follows.
Theorem 1. {\it Let $\Lambda_\varepsilon =\biggl\{\dfrac{n^{3/4}}{(\ln(n+1))^{1/2+\varepsilon}}\biggr\}_{n=1}^\infty$ for $\varepsilon>0$. Let $f(x,y)\in\Lambda_\varepsilon BV(T^2)$ and let
\begin{align*} I_r(f)&=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}J_r(f) \\ &=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}\sum_{r-1<|(m,n)|\leqslant r+1}|a_{m,n}(\psi_{x,y,u,v})|\leqslant C \end{align*}
for $r\geqslant 1$, where
$$ \psi _{x,y,u,v}(s,t)=\psi (s,t)=f(x+t,y+s)w(t)w(s)e^{-i(tu+sv)}, \quad and\quad w(\tau)=\frac\tau{2\sin(\theta/2)}\,. $$
Then
$$ \sup_{R\geqslant 1}\sup _{(x,y)\in T^2}|S_R(f,x,y)|\leqslant C(f,\varepsilon). $$
for each $R\geqslant 1$.}
Problem of circular convergence of Fourier series of the characteristic function of plane convex sets are also considered.

UDC: 517.52

MSC: 42B05, 42B08, 26B30

Received: 14.03.1996

DOI: 10.4213/sm186


 English version:
Sbornik: Mathematics, 1997, 188:1, 29–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024