RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 130(172), Number 2(6), Pages 275–283 (Mi sm1869)

This article is cited in 41 papers

On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean

I. I. Sharapudinov


Abstract: Let $p=p(t)$ be a measurable function defined on $[0,1]$. If $p(t)$ is essentially bounded on $[0,1]$, denote by $\mathscr L^{p(t)}([0,1])$ the set of measurable functions $f$ defined on $[0,1]$ for which $\int_0^1|f(t)|^{p(t)}\,dt<\infty$. The space $\mathscr L^{p(t)}([0,1])$ with $p(t)\geqslant1$ is a normed space with norm
$$ \|f\|_p=\inf\biggl\{\alpha>0:\int\limits_0^1\bigg|\frac{f(t)}\alpha\bigg|^{p(t)}\,dt\leqslant1\biggr\}. $$

This paper examines the question of whether the Haar system is a basis in $\mathscr L^{p(t)}([0,1])$. Conditions that are in a certain sense definitive on the function $p(t)$ in order that the Haar system be a basis of $\mathscr L^{p(t)}([0,1])$ are obtained. The concept of a localization principle in the mean is introduced, and its connection with the space $\mathscr L^{p(t)}([0,1])$ is exhibited.
Bibliography: 2 titles.

UDC: 517.5

MSC: Primary 42C10; Secondary 33A65, 46A35, 46E30

Received: 19.02.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 58:1, 279–287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024