RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 130(172), Number 3(7), Pages 335–348 (Mi sm1879)

This article is cited in 12 papers

Summability of the logarithm of an almost analytic function and a generalization of the Levinson–Cartwright theorem

A. L. Vol'berg, B. Jöricke


Abstract: This paper is devoted to a generalization of a classical inequality: let $f$ be bounded and analytic in the disk $D$; then $f\not\equiv0\Rightarrow\int_{\mathrm{Fr}\mathbf D}\log|f(e^{i\theta})|\,d\theta>-\infty$, in the case of nonanalytic functions $f$. More precisely, it is proved that if $f=f_1+f_2$, where $f_1$ is the boundary function of a function of bounded characteristic, and $f_2$ is a function in a quasianalytic class (defined by some condition of regularity of decrease of its Fourier coefficients), then $\int_{\mathrm{Fr}\mathbf D}\log|f(e^{i\theta})|\,d\theta>-\infty$. The proof of this result depends in an essential way on a theorem of Levinson and Cartwright. At the same time, the result strengthens the Levinson–Cartwright theorem.
Bibliography: 7 titles.

UDC: 517.5

MSC: 30C80, 30D60, 30E25, 30D50

Received: 25.06.1985


 English version:
Mathematics of the USSR-Sbornik, 1987, 58:2, 337–349

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025