RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 132(174), Number 4, Pages 451–469 (Mi sm1890)

This article is cited in 1 paper

Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients

V. G. Maz'ya, M. G. Sulimov


Abstract: The authors study equations of the form
$$ \sum_{k\geqslant0}A_ku_{n-k}=f_n,\qquad n=0,\pm1,\dots, $$
where the $u_n$ and $f_n$ are elements in some Hilbert space $H$, and the $A_k$ are bounded linear operators on $H$. It is assumed that the corresponding operator symbol
$$ L(\lambda )=\sum_{k\geqslant0}A_k\lambda^k $$
is a holomorphic Fredholm operator-valued function which is normal in some neighborhood of zero.
Bibliography: 9 titles.

UDC: 517.9

MSC: Primary 39A10; Secondary 47A56, 47A53

Received: 12.07.1985 and 07.07.1986


 English version:
Mathematics of the USSR-Sbornik, 1988, 60:2, 437–455

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024