RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 133(175), Number 1(5), Pages 86–102 (Mi sm1915)

This article is cited in 14 papers

Tchebycheff rational approximation in the disk, on the circle, and on a closed interval

A. A. Pekarskii


Abstract: Suppose that the function $f$ is analytic in the disk $\{z:|z|<1\}$ and continuous in its closure. Let $R_n(f)$ denote the best uniform approximation of $f$ by rational functions of degree at most $n$. In 1965 Dolzhenko established that if $\sum R_n(f)<\infty$ then $f'$ belongs to the Hardy space $H_1$. The following converse of this result is obtained here: if $f'\in H_1$, then $R_n(f)=O(1/n)$. In combination with results of Peller, Semmes, and the author, this estimate yields, in particular, a description of the set of functions $f$ with $\bigl[\sum(2^{k\alpha }R_{2^k}(f))^q\bigr]^{1/q}<\infty$, where $\alpha>1$ and $0<q\le\infty$.
Bibliography: 38 titles.

UDC: 517.53

MSC: Primary 41A20, 41A50; Secondary 30C15, 30D55, 41A25

Received: 01.04.1986


 English version:
Mathematics of the USSR-Sbornik, 1988, 61:1, 87–102

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025