RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 131(173), Number 2(10), Pages 240–250 (Mi sm1921)

This article is cited in 13 papers

Extrinsic dimensions of tubular minimal hypersurfaces

A. D. Vedenyapin, V. M. Miklyukov


Abstract: It is established that every embedded minimal hypersurface in $R^{n+1}$ that is tubular with respect to some line has a bounded projection on that line for $n\geqslant3$. An estimate of the length of the projection is given, and it is shown that equality in this estimate can be attained only on a catenoid.
Bibliography: 12 titles.

UDC: 517.9

MSC: 53A10

Received: 15.10.1984 and 27.05.1985


 English version:
Mathematics of the USSR-Sbornik, 1988, 59:1, 237–245

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025