RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 126(168), Number 2, Pages 267–285 (Mi sm1937)

This article is cited in 12 papers

Representation of measurable functions of several variables by multiple trigonometric series

F. G. Arutyunyan


Abstract: Let $\{M_k\}_1^{+\infty}$ and $\{N_k\}_1^{+\infty}$ be sequences of natural numbers satisfying the condition $M_k-N_k\to+\infty$ as $k\to+\infty$. It is proved in this paper that for any a.e. finite measurable function $f(x_1,\dots,x_m)$ of $m$ variables, $0\leqslant x\leqslant2\pi$, there exists an $m$-fold trigonometric series
$$ \sum_{j_s\in I,\,1\leqslant s\leqslant m}\operatorname{Re}\bigl(a_{j_1,\dots,j_m}e^{i(j_1x_1+\dots+j_mx_m)}\bigr) $$
(where $I=\bigcup_{k=1}^{+\infty}\{j:\,N_k\leqslant j\leqslant M_k\}$), which is a.e. summable to $f(x_1,\dots,x_m)$ by all the classical summation methods.
At the same time examples are exhibited of sequences $\{M_k\}$ and $\{N_k\}$ (with the property mentioned above) such that none of the series
$$ \sum_{n\in I}\operatorname{Re}\bigl(a_ne^{inx}\bigr) $$
can converge to $+\infty$ on a set of positive measure.
Bibliography: 13 titles.

UDC: 517.5

MSC: 42B05, 42B99, 28A20

Received: 19.10.1983


 English version:
Mathematics of the USSR-Sbornik, 1986, 54:1, 259–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024