RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 126(168), Number 3, Pages 426–430 (Mi sm1945)

This article is cited in 2 papers

Defining relations of the special unitary group over a quadratic extension of an ordered Euclidean field

Zh. S. Satarov


Abstract: Let $k$ be an ordered Euclidean field (i.e., an ordered field in which the group of nonzero squares coincides with the group of positive elements) and $K$ its quadratic extension. Further, let $\overline\xi$ denote the image of the element $\xi$ under the nontrivial automorphism of the extension $K/k$. We consider the special unitary group $SU(n, K)$ of degree $n\geqslant2$ over the field $K$, i.e., the subgroup of matrices $a$ of the general linear group $GL(n, K)$ for which $aa^*=e$ and $\det a=1$, where $^*$ denotes taking conjugate-transpose, i.e., $(a^*)_{ij}=\overline a_{ji}$. Defining relations in a certain natural system of generators are found for the group $SU(n,\, K)$, $n\geqslant2$.
Bibliography: 8 titles.

UDC: 512

MSC: 20G30, 20F05

Received: 22.03.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 54:2, 415–419

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024