RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 126(168), Number 4, Pages 435–472 (Mi sm1946)

This article is cited in 81 papers

On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation

V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii


Abstract: The asymptotic ($t\to+\infty$) behavior of solutions of the Cauchy problem is studied for the semilinear parabolic equation
$$ u_t=\Delta u-u^\beta,\quad t>0,\ x\in R^N;\qquad u(0,x)=u_0(x)\geqslant0,\quad x\in R^N, $$
where $\beta=\mathrm{const}>1$ and $u_0(x)\to0$ as $|x|\to+\infty$. The existence is established of an infinite collection (a continuum) of distinct self-similar solutions of the form $u_A(t,x)=(T+t)^{-1/(\beta-1)}\theta_A(\xi)$, $\xi=|x|/(T+t)^{1/2}$, where the function $\theta_A>0$ satisfies an ordinary differential equation. Conditions for the asymptotic stability of these solutions are established. It is shown that for $\beta\geqslant1+2/N$ there exist solutions of the problem whose behavior as $t\to+\infty$ is described by approximate self-similar solutions (ap.s.-s.s.'s) $u_a(t,x)$ which in the case $\beta>1+2/N$ coincide with a family of self-similar solutions of the heat equation $(u_a)_t=\Delta u_a$, while for $\beta=1+2/N$ and $u_0\in L^1(R^N)$ the ap.s.-s.s. has the form $u_a=[(T+t)\ln(T+t)]^{-N/2}c_N\exp(-|x|^2/4(T+t))$, where $c_N=(N/2)^{N/2}(1+2/N)^{N^2/4}$.
Figures: 2.
Bibliography: 78 titles.

UDC: 517.956

MSC: Primary 35K55, 35K15; Secondary 35K05, 35B35

Received: 23.07.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 54:2, 421–455

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024