RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 126(168), Number 4, Pages 473–489 (Mi sm1947)

This article is cited in 11 papers

Central extensions of the Zassenhaus algebra and their irreducible representations

A. S. Dzhumadil'daev


Abstract: It is shown that the Zassenhaus algebra $W_1(m)$ over a field of characteristic $p>3$ has, up to equivalence, a unique nontrivial central extension $\widetilde{W}_1(m)$ (the modular Virasoro algebra). For the Virasoro algebra we construct a generalized Casimir element. All the irreducible $\widetilde{W}_1(m)$-modules are described. It is shown that there is no simple graded Lie algebra with zero component $L_0\cong\widetilde{W}_1(m)$.
Bibliography: 15 titles.

UDC: 512.5

MSC: Primary 17B50; Secondary 17B10, 17B56

Received: 15.02.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 54:2, 457–474

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025