RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 127(169), Number 1(5), Pages 3–20 (Mi sm1954)

This article is cited in 23 papers

Classes of analytic functions determined by best rational approximations in $H_p$

A. A. Pekarskii


Abstract: Let $R_n(f,H_p)$ be the best approximation to the function $f$ in the Hardy space $H_p$ by rational functions of degree at most $n-1$. It is shown that, for example, $f\in H_p$ ($1<p<\infty$) satisfies the condition $\sum_{k=0}^\infty(2^{k\alpha}R_{2^k}(f,H_p))^\sigma<\infty$ ($\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$) if and only if $f$ belongs to the Hardy–Besov space $B_\sigma^\alpha$. Rational approximation is also considered in $H_p$ ($p\leqslant1$) and $H_\infty$. Some applications of the results are given.
Bibliography: 29 titles.

UDC: 517.53

MSC: 30E10, 30D55, 30E05

Received: 01.11.1983 and 14.11.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 55:1, 1–18

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025