RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 127(169), Number 2(6), Pages 239–244 (Mi sm1967)

This article is cited in 4 papers

$TI$-subgroups in groups of characteristic 2 type

A. A. Makhnev


Abstract: Properties of cyclic $TI$-subgroups of order 4 in finite groups are studied. A consequence of the results is the
Corollary. {\it Suppose that the $2$-group $A$ is a $TI$-subgroup of a finite group $G$, and that $F^*(G)$ is a simple group of characteristic $2$ type. Then either $A$ is elementary, or $F^*(G)\simeq G_2(3),$ $L_2(2^n\pm1),$ $L_3(3),$ $U_3(3),$ $U_4(3),$ $L_4(2),$ $U_4(2),$ $Sz(2^n),$ $U_3(2^n),$ $L_3(4),$ or $M_{11}$.}
Bibliography: 13 titles.

UDC: 512.542

MSC: 20D05, 20D25

Received: 30.01.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 55:1, 237–242

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025