RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1984 Volume 123(165), Number 1, Pages 120–129 (Mi sm1989)

On the length of the period of a quadratic irrationality

E. P. Golubeva


Abstract: The estimate
$$ Q(D)\asymp\sqrt DL_{4D}(1),\qquad D\to\infty, $$
is proved, where $Q(D)$ is the number of reduced binary quadratic forms of discriminant $4D$ and $L_{4D}(s)=\sum^\infty_{n=1}\bigl(\frac{4D}n\bigr)n^{-s}$ is a Dirichlet $L$-series.
Results concerning individual estimates of $l/\log\varepsilon$ are also obtained, where $l$ is the length of the period of the continued-fraction expansion of $\xi\in\mathbf Q(\sqrt D)$ and $\varepsilon$ is a fundamental unit of the field $\mathbf Q(\sqrt D)$.
Bibliography: 12 titles.

UDC: 511.465

MSC: Primary 10C02, 10F20; Secondary 10G05

Received: 21.07.1982


 English version:
Mathematics of the USSR-Sbornik, 1985, 51:1, 119–128

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025