RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 127(169), Number 3(7), Pages 352–383 (Mi sm2001)

This article is cited in 3 papers

On embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes

V. I. Kolyada


Abstract: Necessary and sufficient conditions are obtained for embedding the function classes $H_p^{\omega_1,\dots,\omega_\nu}$, with given majorants of partial $L_p$-moduli of continuity, in the space $L_q([0,1]^\nu)$ ($1\leqslant p<q<\infty$). In particular, for Lipschitz classes $H_p^{\delta^{\alpha_1},\dots,\delta^{\alpha_\nu}}$ ($0<\alpha_i\leqslant1$) a criterion is obtained for embedding in $L_q$ with limit exponent $q=\frac p{1-\overline\alpha p}$, where $\overline\alpha=\bigl(\frac1{\alpha_1}+\dots+\frac1{\alpha_\nu}\bigr)^{-1}$.
Bibliography: 13 titles.

UDC: 517.5

MSC: Primary 46E35; Secondary 26B35

Received: 27.02.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 55:2, 351–381

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025