RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 127(169), Number 3(7), Pages 384–397 (Mi sm2002)

This article is cited in 7 papers

Identities in the universal enveloping algebra for a Lie superalgebra

Yu. A. Bahturin


Abstract: The author considers Lie superalgebras $L$ over a field of characteristic zero whose universal enveloping algebra $U(L)$ is a $PI$-algebra. Such algebras may be described as follows: the even component $L_0$ of $L$ is Abelian and the odd component $L_1$ contains an $L_0$-submodule $M$ of finite codimension such that the subspace $[L_0, M]$ is finite-dimensional.
Bibliography: 13 titles.

UDC: 512

MSC: 17A70

Received: 15.05.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 55:2, 383–396

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024