RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 128(170), Number 1(9), Pages 50–65 (Mi sm2017)

This article is cited in 8 papers

Structure of the set of sums of a conditionally convergent series in a normed space

S. A. Chobanyan


Abstract: Conditions are investigated for the set of sums of a conditionally convergent series with terms in a normed space to be linear. Main result: if $\sum a_k$ is a conditionally convergent series such that $\sum a_kr_k(s)$ converges for almost all $s$, then the set of sums of the series $\sum a_k$ is linear ($(r_k)$ is the sequence of Rademacher functions).
Bibliography: 24 titles.

UDC: 517.55

MSC: Primary 40A05, 40A30, 46B20; Secondary 42C20

Received: 27.06.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 56:1, 49–62

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024