RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1984 Volume 123(165), Number 3, Pages 391–406 (Mi sm2027)

This article is cited in 17 papers

A theorem on comparison of spectra, and spectral asymptotics for a Keldysh pencil

A. S. Markus, V. I. Matsaev


Abstract: Suppose that $H$ is a normal operator, the pencil $L_0(\lambda)=I-\lambda^nH^n$ has a discrete and positive spectrum in the domain $\Omega(2\theta,R)=\{\lambda:\lvert\arg\lambda\rvert<2\theta,\ |\lambda|>R\}$, and $S(\lambda)$ is an operator-valued function that is holomorphic in $\Omega(2\theta,R)$ and small in comparison to $L_0(\lambda)$ (in a certain sense). A theorem is proved on comparison of the spectra of $L(\lambda)=L_0(\lambda)-S(\lambda)$ and $L_0(\lambda)$, i.e., on an estimate of the difference $N(r)-N_0(r)$, where $N(r)$ ($N_0(r)$) is the distribution function of the spectrum of $L(\lambda)$ ($L_0(\lambda)$) in $\Omega(\theta,\rho)$ ($\rho\geqslant R$). This result implies generalizations of theorems of Keldysh on the asymptotic behavior of the spectrum of a polynomial operator pencil.
Bibliography: 14 titles.

UDC: 517.984

MSC: Primary 47A10, 47A55; Secondary 47A53, 47B05, 47B10, 47B15

Received: 23.07.1981


 English version:
Mathematics of the USSR-Sbornik, 1985, 51:2, 389–404

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025