RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1984 Volume 124(166), Number 4(8), Pages 571–588 (Mi sm2068)

This article is cited in 27 papers

Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation

A. A. Pekarskii


Abstract: Let $H_p$ be the Hardy space of functions $f$ that are analytic in the disk $|z|<1$ and let $J^\alpha f$ be the derivative of $f$ of order $\alpha$ in the sense of Weyl. It is shown, for example, that if $r$ is a rational function of degree $n\geqslant1$ with all its poles in the domain $|z|>1$, then $\|J^\alpha r\|_{H_\sigma}\leqslant cn^\alpha\|r\|_{H_p}$, where $p\in(1,\infty]$, $\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$ and $c>0$ and depends only on $\alpha$ and $p$.
Bibliography: 32 titles.

UDC: 517.53

MSC: Primary 41A20, 30D55, 30E10; Secondary 26A33

Received: 13.05.1983


 English version:
Mathematics of the USSR-Sbornik, 1985, 52:2, 557–574

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025