RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 121(163), Number 1(5), Pages 48–59 (Mi sm2153)

This article is cited in 2 papers

Infinitesimal bendings of a class of multidimensional surfaces with boundary

P. E. Markov


Abstract: Infinitesimal bendings are considered for a $2k$-dimensional ($k\geqslant1$) surface of class $C^2$ with boundary in $3k$-dimensional Euclidean space in the case when the surface is star-shaped with respect to some $(k-1)$-dimensional plane or projects in a one-to-one manner on some $2k$-dimensional plane. Tests are established for the rigidity of such surfaces under boundary conditions of sliding.
Bibliography: 12 titles.

UDC: 513.736

MSC: Primary 53A05, 53C45, 58H15; Secondary 58G05

Received: 21.01.1982


 English version:
Mathematics of the USSR-Sbornik, 1984, 49:1, 49–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025