RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 128(170), Number 3(11), Pages 354–363 (Mi sm2164)

This article is cited in 78 papers

On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds

A. A. Grigor'yan


Abstract: A Riemannian manifold is said to be parabolic if there does no exist a positive fundamental solution of the Laplace equation on it. The purpose of this article is to obtain geometric conditions, both necessary and sufficient, for a manifold to be parabolic.
Bibliography: 11 titles.

UDC: 514.7

MSC: Primary 35A08, 35J05, 53C25; Secondary 31A15, 34B27

Received: 05.07.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 56:2, 349–358

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025