RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 128(170), Number 3(11), Pages 403–415 (Mi sm2167)

This article is cited in 38 papers

Solution of the Dirichlet problem for some equations of Monge–Aampére type

N. M. Ivochkina


Abstract: The solvability of the problem
$$ F_m(u)=f(x,u,u_x)\geqslant\nu>0,\qquad u|_{\partial\Omega}=0, $$
in $C^{l+2+\alpha}(\overline\Omega)$, $l\geqslant2$, is proved, where $F_m(u)$ is the sum of all the principal minors of order $m$ of the Hessian $F_n(u)\equiv\det(u_{xx})$, $\Omega$ is a bounded strictly convex region in $R^n$, $n\geq2$, with boundary $\partial\Omega$ of class $C^{l+2+\alpha}$, for $m = 1,2,3,n$, under certain restrictions on the occurrence of $u$ and $p$ as arguments in $f(x,u,p)$.
Bibliography: 21 titles.

UDC: 517.9

MSC: 35Q99

Received: 01.08.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 56:2, 403–415

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025