RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1982 Volume 117(159), Number 1, Pages 32–43 (Mi sm2179)

This article is cited in 12 papers

Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm

È. M. Galeev


Abstract: In this paper the author establishes a sharp order estimate, in the mixed norm of $L_p(\mathbf T^n)$ for $1<p<\infty$ and in $L_\infty(\mathbf T^n)$ ($\mathbf T^n =[-\pi,\pi]^n$ is the $n$-dimensional torus), of the derivatives of order $\beta \in \mathbf R^n$ of the multidimensional Dirichlet $\alpha$-kernel $D_{\alpha,\mu}$ and the function $F_{\alpha,\mu}$, $\alpha>0$, $\mu>0$, which are sums of exponentials $e^{i(k,t)}$ lying respectively inside and outside a “graduated hyperbolic cross”, i.e., the set $\{k\in\square_s\mid(\alpha,s)\leqslant \mu\}$, where $\square_s=\{k\in\mathbf Z^n\mid2^{s_{j-1}} \leqslant|k_j|<2^{s_j},\, j=1,\ldots,n\}$, $s>0$.
Bibliography: 11 titles.

UDC: 517.5

MSC: Primary 42B99; Secondary 26A33, 46E30

Received: 12.12.1980


 English version:
Mathematics of the USSR-Sbornik, 1983, 45:1, 31–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024