RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1982 Volume 117(159), Number 4, Pages 523–533 (Mi sm2233)

This article is cited in 3 papers

On $\Sigma$ – realizations of metrics of positive curvature

V. T. Fomenko


Abstract: A metric $ds^2$ admits a $\Sigma$-realization if there is a realization of it in $E^3$ in the form of a surface whose boundary lies on a given surface $\Sigma$. This paper proves the existence of $\Sigma$-realizations of a certain class of metrics of positive curvature for surfaces of quite general form, and describes a number of possible $\Sigma$-realizations of the given metric. The proof is based on a consideration of a nonlinear boundary-value problem for immersion equations.
Bibliography: 3 titles.

UDC: 513.736

MSC: Primary 53A05; Secondary 35G15

Received: 28.11.1981


 English version:
Mathematics of the USSR-Sbornik, 1983, 45:4, 515–525

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025