RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1982 Volume 118(160), Number 1(5), Pages 132–142 (Mi sm2242)

This article is cited in 3 papers

Identities in almost nilpotent Lie rings

M. V. Volkov, A. G. Gein


Abstract: The following Lie rings $L$ are shown to have finite bases for their identities. (i) $L$ has a finite ideal $K$ with $L/K$ nilpotent. (ii) $L$ has a nilpotent ideal $N$ of finite index with $\operatorname{ad}x$ nilpotent on $N$ for each $x\in L$. (iii) $L$ is soluble, algebraic and possesses a nilpotent ideal of finite index. Of independent interest are some other results giving characterizations of certain classes of varieties of Lie rings.
Bibliography: 17 titles.

UDC: 512.554.3

MSC: Primary 17B99; Secondary 17B30, 17B65

Received: 01.07.1980 and 23.08.1981


 English version:
Mathematics of the USSR-Sbornik, 1983, 46:1, 133–142

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024