RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1982 Volume 118(160), Number 3(7), Pages 399–410 (Mi sm2260)

This article is cited in 2 papers

Smoothness of generalized solutions of the equation $\biggl(\lambda-\displaystyle\sum_{i,j}\nabla_ia_{ij}\nabla_j\biggr)u=f$ with continuous coefficients

Yu. A. Semenov


Abstract: It is shown that if $u$ is a weak solution in $L^2(\mathbf R^l)$ of the equation
$$ \biggl(\lambda-\sum_{i,j=1}^l\nabla_i a_{ij}\nabla_j\biggr)u=f, \qquad f\in L^1\cap L^\infty, \quad \lambda\geqslant0, $$
with continuous $a_{ij}(\,\cdot\,)$ and the matrix $(a_{ij})$ is real-valued, symmetric, and positive-definite, then $u\in\bigcap_{1<q<\infty}L_1^q(\mathbf R^l)$, where $L_k^p(\mathbf R^l)$ is the Sobolev space of functions whose derivatives through order $k$ are $p$-integrable.
It is also proved that if $(a_{ij})=(k^2\delta_{ij})$, $\delta_{ij}$ the Kronecker symbol, $1\leqslant k$, and $\overrightarrow\nabla k\in L^4$, then for a certain extension $A\supset 1-\overrightarrow\nabla k^2\overrightarrow\nabla\upharpoonright C_0^\infty$ it is true that $A^{-1}[L^2\cap L^\infty]\subset L_2^2 \cap L_1^4$, and, moreover, $k^2\nabla_i\nabla_j u \in L^2$ and $k\nabla_i u\in L^4$ $\forall u\in A^{-1}[L^2\cap L^\infty]$.
Bibliography: 5 titles.

UDC: 517.947

MSC: Primary 35B65, 35D10; Secondary 46E35

Received: 22.10.1980


 English version:
Mathematics of the USSR-Sbornik, 1983, 46:3, 403–415

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024