RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 122(164), Number 1(9), Pages 41–63 (Mi sm2273)

On properties of functions of bounded variation on a set

T. P. Lukashenko


Abstract: The Kolmogorov inequality for conjugate functions is generalized in § 1. Theorem 2 is the main result; it shows, for example, that if a function $F$ is $2\pi$-periodic to within linearity and of bounded variation in the narrow sense on a set $E\subset[0,2\pi)$, then for any $\lambda>0$
$$ \bigg|\bigg\{x\in E:\sup_{0\leqslant r>1}|\overline{F'}(r,x)|>\lambda\bigg\}\bigg|^*\leqslant\frac C\lambda{\operatornamewithlimits{Var}_E}^*F. $$

In § 2 a well-known theorem of F. and M. Riesz is generalized. In particular, the following is proved.
Theorem 5. {\it Suppose that a $2\pi$-periodic integrable function $\Phi$ and its conjugate $\overline\Phi$ are defined everywhere$,$ bounded$,$ and of bounded variation in the narrow sense on a set $E\subset[0,2\pi),$ and that $\Phi(x)=\lim_{E\ni t\to x}\Phi(t)$ and $\overline\Phi(x)=\lim_{E\ni t\to x}\overline\Phi(t)$ if $\lim_{E\ni t\to x}\Phi(t)$ and $\lim_{E\ni t\to x}\overline\Phi(t)$ exist at a point $x$. Then $\Phi$ and $\overline\Phi$ are absolutely continuous in the narrow sense on $E$.}
Bibliography: 14 titles.

UDC: 517.51

MSC: Primary 26A45, 26A46, 42A50; Secondary 26A39, 26A42, 30E99

Received: 24.06.1982


 English version:
Mathematics of the USSR-Sbornik, 1985, 50:1, 41–66

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025