RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 108(150), Number 2, Pages 187–211 (Mi sm2279)

This article is cited in 1 paper

Crossed group rings of finite groups and rings of $p$-adic integers with finitely many indecomposable integral representations

L. F. Barannik, P. M. Gudivok


Abstract: Let $F$ be a finite extension of the field $Q_p$ of rational $p$-adic numbers, $R$ the ring of all integral elements of $F$, $ R^*$ the multiplicative group of $R$, $G$ a finite group, and $\Lambda=(G,R,\lambda)$ the crossed group ring of $G$ and $R$ with the factor system $\{\lambda_{a,b}\}$ ($\lambda_{a,b}\in R^*$; $a,b\in G$). A classification is given of the rings $\Lambda$ for which the number of indecomposable $R$-representations is finite. When $\Lambda$ is a group ring, this problem was solved in papers by Faddeev, Borevich, Gudivok, Yakobinskii, and others.
Bibliography: 22 titles.

UDC: 519.49

MSC: 20C05, 20C10

Received: 06.06.1977


 English version:
Mathematics of the USSR-Sbornik, 1980, 36:2, 173–194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025