RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 6, Pages 99–118 (Mi sm229)

This article is cited in 2 papers

Diagonalization of operators over continuous fields of $C^*$-algebras

V. M. Manuilov

M. V. Lomonosov Moscow State University

Abstract: A proof is given of a non-commutative analogue of the classical Hilbert–Schmidt theorem on diagonalization of a self-adjoint compact operator in a Hilbert space; namely, it is shown for a certain class of $C^*$-algebras that a self-adjoint compact operator in a Hilbert module $H_A$ over a $C^*$-algebra $A$ can be reduced to diagonal form in some larger module over a larger $W^*$-algebra, where the elements on the diagonal belong to $A$.

UDC: 517.98

MSC: Primary 46L05; Secondary 46L10, 46H25

Received: 10.12.1996

DOI: 10.4213/sm229


 English version:
Sbornik: Mathematics, 1997, 188:6, 893–911

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024