RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 122(164), Number 4(12), Pages 435–457 (Mi sm2305)

This article is cited in 21 papers

On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone

V. G. Maz'ya, S. A. Nazarov, B. A. Plamenevskii


Abstract: The power singularities of solutions of the Dirichlet problem for strongly elliptic differential systems of order $2m$ outside a slender cone $k_\varepsilon$ are studied, where $\varepsilon$ is a small positive parameter which characterizes the angle vertex of the cone. In essence, the asymptotics as $\varepsilon\to0$ of the small eigenvalues $\lambda_j(\varepsilon)$ of the first boundary value problem on the unit sphere with a small hole are discussed for a differential operator depending polynomially on a complex parameter $\lambda$. As an application of the asymptotic formulas for $\lambda_j(\varepsilon)$, a theorem is obtained on the validity of a bound on the maximum modulus of a solution of the Dirichlet problem in a region with a slender conical notch.
Bibliography: 22 titles.

UDC: 517.946

MSC: Primary 35J55, 35P99; Secondary 35B35

Received: 22.11.1982


 English version:
Mathematics of the USSR-Sbornik, 1985, 50:2, 415–437

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024