RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 122(164), Number 4(12), Pages 511–526 (Mi sm2312)

This article is cited in 1 paper

The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables

B. Jöricke


Abstract: Let $G\subset\mathbf C^n$ be a bounded doamin and let $\omega$ be a modulus of continuity. This article is devoted to the following problem: which closed sets $S$ with $S\subset\overline G$ possess the property that, for an arbitrary function $f$ belonging to the algebra $A(G)$ of all functions analytic in $G$ and continuous in $\overline G$, the relation
$$ \max_{z,\zeta\in S,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant\omega(\delta) $$
for all $\delta>0$ implies
$$ \max_{z,\zeta\in\overline G,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant C\omega(\delta) $$
for all $\delta>0$, where the constant $C$ depends only on $G$ and $S$.
The main result is a theorem which asserts that if $G$ is a regular Weil domain then $S$ can be taken to be the Shilov boundary.
Bibliography: 20 titles.

UDC: 517.15

MSC: Primary 32A40; Secondary 32E35

Received: 09.02.1982 and 31.05.1983


 English version:
Mathematics of the USSR-Sbornik, 1985, 50:2, 495–511

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025