RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 114(156), Number 3, Pages 378–405 (Mi sm2330)

This article is cited in 48 papers

Equiconvergence theorems for integrodifferential and integral operators

A. P. Khromov


Abstract: The well-known results of Steklov, Tamarkin, and Stone on the equiconvergence of Fourier expansions in eigenfunctions and associated functions of differential operators and in a trigonometrical system for arbitrary functions from $L[0,1]$ are carried over to integral operators $Af=\int^1_0A(x, t)f(t)\,dt$ and to integrodifferential operators of the form
$$ y^{(n)}+\alpha y+\int^1_0N(x, t)[y^{(n)}(t)+\alpha y(t)]\,dt, \qquad U_j(y)=\int^1_0y(t)\varphi_j(t)\,dt\quad(j=1,\dots,n), $$
where $\alpha$ is a complex number and $U_j(y)$ are linear forms in $y^{(s)}(0)$ and $y^{(s)}(1)$ $(s=0,1,\dots,n-1)$.
Bibliography: 23 titles.

UDC: 513.88

MSC: Primary 42A20, 47A70, 47G05; Secondary 45P05

Received: 07.03.1979


 English version:
Mathematics of the USSR-Sbornik, 1982, 42:3, 331–355

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025