RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 108(150), Number 4, Pages 517–528 (Mi sm2339)

This article is cited in 2 papers

Maximal orders in a finite-dimensional central simple algebra over a valuation ring of height 1

N. I. Dubrovin


Abstract: This paper consists of two sections. In §  maximal, almost maximal, and complete valuation rings are characterized in terms of the decomposability of torsion-free modules of rank 2. In § 2 an attempt is made to describe the maximal $V$-orders in the matrix ring $K_n$, where $V$ is a valuation ring of height 1 in the field $K$. Also, § 2 contains a generalization to a matrix algebra over a field of the well-known fact that a maximal subring of a field is either a field or a valuation ring of height 1.
Bibliography: 9 titles.

UDC: 519.49

MSC: 13F30, 16A18, 16A42

Received: 03.11.1977


 English version:
Mathematics of the USSR-Sbornik, 1980, 36:4, 483–493

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025