Abstract:
Let $\{\varphi_{\sigma,n}(z)\}_{n=0}^\infty$ be the system of polynomials orthonormal on the unit circumference with respect to the measure $\sigma$. By way of generalizing and strengthening a number of previous results, we show that if $\ln\sigma'(\theta)\in L^1[0,2\pi]$,
$\sigma'(\theta)$ continuous and positive on $[a,b]\subset[0,2\pi]$, and $\omega(\sigma';\tau)_{[a,b]}\tau^{-1}\in L^1[0,b-a]$, then the
polynomials $\varphi_{\sigma,n}^*(e^{i\theta})=e^{in\theta}\overline{\varphi_{\sigma,n}(e^{i\theta})}$ converge uniformly in $\theta$, inside $(a,b)$, to the Szegö function. The result so formulated is shown to be definitive.
Bibligraphy: 16 titles.