RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 114(156), Number 4, Pages 643–651 (Mi sm2360)

Finite groups in which the centralizers of elements of order three are nilpotent

V. R. Maier


Abstract: In this paper it is proved that a finite group of 3-rank 1, in which the soluble radical is trivial and the centralizers of elements of order 3 are nilpotent, is isomorphic to one of the following groups: $L_3(4)$, $L_3^*(4)$, $PGL(2, 3^n)$ or $H(3^n)$, $n\geqslant2$.
Bibliography: 12 titles.

UDC: 519.44

MSC: 20D05

Received: 07.02.1980 and 24.11.1980


 English version:
Mathematics of the USSR-Sbornik, 1982, 42:4, 569–575

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024