RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 115(157), Number 1(5), Pages 130–145 (Mi sm2378)

This article is cited in 2 papers

On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients

A. L. Piatnitski


Abstract: In this paper, the behavior of the support of the solution to the Cauchy problem for a hyperbolic equation of the form
$$ \frac{\partial^2}{\partial t^2}u^\varepsilon(x, t)-\frac\partial{\partial x_i}a_{ij}\biggl(\frac x\varepsilon\biggr)\frac\partial{\partial x_j}u^\varepsilon+b_i\biggl(x, \frac x\varepsilon\biggr)\frac\partial{\partial x_i}u^\varepsilon+c\biggl(x, \frac x\varepsilon\biggr)u^\varepsilon=0 $$
with periodic, rapidly oscillating coefficients $a_{ij}(y)$ and small parameter $\varepsilon$, is studied. It is proved that, for small $\varepsilon$, the domain of dependence of this equation is close to some convex cone with rectilinear generators.
In the case when the coefficients $a_{ij}$ depend essentially on only one argument, e.g. $y_1$, this limit cone can be found explicitly. Its construction uses the Hamiltonian, which does not depend on $\varepsilon$ and does not correspond to any differential operator.
Bibliography: 8 titles.

UDC: 517.946

MSC: 35L15, 35B20, 35B40

Received: 24.03.1980


 English version:
Mathematics of the USSR-Sbornik, 1982, 43:1, 117–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025