RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 109(151), Number 3(7), Pages 378–394 (Mi sm2390)

This article is cited in 8 papers

On the ramification theory of two-dimensional local fields

V. G. Lomadze


Abstract: Filtrations are defined on the group $K_2^\operatorname{top}$ of a two-dimensional local field of characteristic $p>0$ and on the Galois group of its $p$-extension. Results are proved which are analogous to the one-dimensional case (Proposition 2.4, Theorem 2.1).
It is proved that, for an Artin–Schreier extension $L/K$ the reciprocity map carries the filtration on the group $ K_2^{\operatorname{top}}(K)$ to the filtration on the group $ \operatorname{Gal}(L/K)$, with the Herbrand numbering. An example is given which shows that this is not true for an arbitrary $p$-extension.
Bibliography: 7 titles.

UDC: 511.65

MSC: 12B10

Received: 15.06.1978


 English version:
Mathematics of the USSR-Sbornik, 1980, 37:3, 349–365

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024