RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 109(151), Number 4(8), Pages 533–554 (Mi sm2399)

This article is cited in 1 paper

A characterization of some finite simple groups by centralizers of elements of order 3

B. K. Durakov


Abstract: In this article the following theorem is proved.
Theorem. {\it Let $G$ be a finite simple group containing an element $a$ of order $3$ such that $C_G(a)/\langle a\rangle\simeq\operatorname{PSL}(2,q)$, $q >3$. If $C_G(x)$ is a $3$-group for any element $x\in G$ of order $3$ not conjugate with elements in $\langle a\rangle$, then $G$ is isomorphic with one of the groups $M_{23}$, $J_3$ or $\operatorname{PSU}(3,8^2)$}.
Bibliography: 18 titles.

UDC: 519.44

MSC: Primary 20D05; Secondary 20D06, 20D08

Received: 30.05.1978


 English version:
Mathematics of the USSR-Sbornik, 1980, 37:4, 489–507

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024