RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 115(157), Number 3(7), Pages 337–363 (Mi sm2400)

This article is cited in 8 papers

A basis of eigenfunctions of Hecke operators in the theory of modular forms of genus $n$

S. A. Evdokimov


Abstract: Let $\mathfrak M^n_k(\Gamma,\mu)$, where $n,k>0$ are integers, $\Gamma$ is some congruence subgroup of $\Gamma^n=\operatorname{Sp}_n(\mathbf Z)$ and $\mu\colon\Gamma\to\mathbf C^*$ is a congruence-character of $\Gamma$, be the space of all Siegel modular forms of genus $n$, weight $k$ and character $\mu$ with respect to $\Gamma$. In this paper, for a very broad class of congruence subgroups $\Gamma$ of $\Gamma^n$, including all those previously investigated and practically all those groups encountered in applications, the author constructs a sufficiently large commutative ring of Hecke operators, acting on $\mathfrak M^n_k(\Gamma,\mu)$, a canonical decomposition
\begin{equation} \mathfrak M^n_k(\Gamma,\mu)=\bigoplus^n_{r=0}\mathfrak M^{n,r}_k(\Gamma,\mu) \tag{1} \end{equation}
and a canonical inner product $(\,{,}\,)_\Gamma$ on $\mathfrak M^n_k(\Gamma,\mu)$. It is shown that the Hecke operators preserve the canonical decomposition (1) and that they are normal with respect to the canonical inner product $(\,{,}\,)_\Gamma$.
Bibliography: 17 titles.

UDC: 511.61

MSC: Primary 10D20; Secondary 10D07

Received: 15.12.1980


 English version:
Mathematics of the USSR-Sbornik, 1982, 43:3, 299–321

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025