RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 115(157), Number 3(7), Pages 478–492 (Mi sm2408)

A scattering problem in laminar media

A. L. Piatnitski


Abstract: The scattering problem in a laminar medium
$$ \Delta u(x)+k^2q(x_1,\dots,x_n,x_1/\varepsilon)u(x)=0 $$
with a radiation condition at infinity is considered. The potential $q(x,y)$ is periodic in the variable $y$. Here $k$ is a large parameter, and $\varepsilon$ is a small parameter with $k\sim\varepsilon^{-\alpha}$, $\alpha>1$.
In this paper a formal asymptotic expansion of the solution of this problem is found. To construct it an operator analogous to the canonical Maslov operator is used which acts on a certain Lagrangian manifold not depending on $\varepsilon$. An analogous problem for the Schrödinger equation in a laminar medium is solved.
Bibliography: 10 titles.

UDC: 517.9

MSC: Primary 35P25, 35C10; Secondary 35J05

Received: 22.05.1979


 English version:
Mathematics of the USSR-Sbornik, 1982, 43:3, 427–441

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025