RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 7, Pages 47–92 (Mi sm242)

This article is cited in 15 papers

Representation varieties of the fundamental groups of non-orientable surfaces

V. V. Benyash-Krivets, V. I. Chernousov

Institute of Mathematics, National Academy of Sciences of the Republic of Belarus

Abstract: Let $\Gamma_g$ be the fundamental group of a compact non-orientable surface of genus $g$ and let $K$ be an algebraically closed field of characteristic 0. The structure of the representation varieties $R(\Gamma_g,\mathrm{GL}_n(K))$, $R(\Gamma_g,\mathrm{SL}_n(K))$ of $\Gamma_g$ into $\mathrm{GL}_n(K)$ and $\mathrm{SL}_n(K)$ and of the character varieties $X(\Gamma_g,\mathrm{GL}_n(K))$ is described; namely, the number of their irreducible components and their dimensions are determined and their birational properties are investigated. It is proved, in particular, that all the irreducible components of $R(\Gamma_g,\mathrm{GL}_n(K))$ are $\mathbb Q$-rational varieties.

UDC: 512.547+512.552

MSC: 14L30, 14M20, 20C15

Received: 09.04.1996

DOI: 10.4213/sm242


 English version:
Sbornik: Mathematics, 1997, 188:7, 997–1039

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025