This article is cited in
7 papers
On the functional dimension of the solution space of hypoelliptic equations
V. N. Margaryan,
G. G. Kazaryan
Abstract:
Let
$P(D)$ be a linear differential operator with constant coefficients, and let
$N=\{u;\ u\in C(E_n),\ P(D)u=0\}$. Exact formulas are established for the functional dimensional
$\operatorname{df}N$ of
$N$ when
$P(D)$ is a) semielliptic or b) hypoelliptic, where if
$P(D)$ is represented in the form
$$
P(D)=\sum_{(\lambda,\alpha)=d_0}\gamma_\alpha D^\alpha+\sum_{(\lambda,\alpha)\leqslant d_1}\gamma_\alpha D^\alpha\equiv P_0(D)+P_1(D),
$$
with
$d_1<d_0$,
$\lambda\in R_n$ and $\lambda_1\geqslant\lambda_2\geqslant\dots\geqslant\lambda_n=1$, then
$P_0(0,\dots,0,\xi_j,0,\dots,0)\ne0$ for
$\xi_j\ne0$ (
$j=1,\dots,n$).
It is proved that
$\operatorname{df}N=|\lambda|$ in case a), while in case b) $\displaystyle\operatorname{df}N=\frac1\Delta\biggl(\sum^{n-1}_{j=1}\lambda_j\biggr)+1$ under certain restrictions on
$P(D)$, where
$$
\Delta=\inf(d_1-d_0+l(\tau))/l(\tau),\qquad\tau\in\Sigma(P_0),
$$
with $\Sigma(P_0)=\{\xi\in R_n,\,|\xi|=1,\,P_0(\xi)=0\}$ and
$l(\tau)$ the order of the zero
$\tau\in\Sigma(P_0)$ of the polynomial
$P_0(\xi)$.
Bibliography: 19 titles.
UDC:
517.9
MSC: Primary
35E99,
35H05,
54F45; Secondary
26C10,
30C15,
32A99,
54C70 Received: 23.05.1980