RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 116(158), Number 1(9), Pages 3–28 (Mi sm2430)

On estimates of the fundamental solution of an elliptic equation with a small parameter

M. A. Evgrafov


Abstract: The behavior of a fundamental solution $\Gamma(x,y;\varepsilon)$ of the elliptic equation
$$ P\biggl(x,-i\varepsilon\,\frac\partial{\partial x}\biggr)u=0 $$
is studied for small $\varepsilon>0$ and fixed $x,y\in\mathbf R^n$. The main result is
$$ \varlimsup_{\varepsilon\to+0}\varepsilon\ln|\Gamma(x,y;\varepsilon)|\leqslant-\rho_P(x,y), $$
where $\rho_P(x,y)$ is the distance between the points $x$ and $y$ in a Finsler metric connected with the function $P(x,\xi)$.
Bibliography: 1 title.

UDC: 517.9

MSC: Primary 35J30, 35B45; Secondary 35E05

Received: 01.07.1980


 English version:
Mathematics of the USSR-Sbornik, 1983, 44:1, 1–22

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025