RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 110(152), Number 3(11), Pages 440–453 (Mi sm2452)

This article is cited in 1 paper

On majorants of $D$-integrable functions

T. P. Lukashenko


Abstract: The following majorants are investigated for functions that are integrable in the Denjoy sense: a maximum function in the sense of Hardy and Littlewood; majorants for the conjugate-function operator and for the Hilbert operator. Results of the following kind are obtained:
$$ |\{x\in P:M(x)>\lambda\}|\leqslant\frac C\lambda\biggl((L)\int_P|f|\,dt+\sum_i\omega\biggl(\int f;(a_i,b_i)\biggr)\biggr), $$
where $M$ is the majorant of $f$; $P$ is a closed set with complementary intervals $\{(a_i,b_i)\}$; and $\omega\bigl(\int f;(a_i,b_i)\bigr)$ is the oscillation of an indefinite integral of $f$ on $(a_i,b_i)$.
Bibhography: 9 titles.

UDC: 517.51

MSC: Primary 42A50, 44A15, 26A39, 26D15, 42B25; Secondary 26A24

Received: 15.01.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 38:3, 407–420

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025