RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 110(152), Number 3(11), Pages 369–398 (Mi sm2456)

This article is cited in 5 papers

Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$

S. A. Evdokimov


Abstract: In this paper we prove meromorphic continuation to the entire complex plane and derive a functional equation for the zeta-function $Z_F(s)$ corresponding to a Siegel modular form $F$ which is automorphic for the principal congruence-subgroup of level $q$ in the integral symplectic group $\operatorname{Sp}_2(\mathbf Z)$ of genus $2$ and is an eigenfunction for all of the Hecke operators $T_k(m)$ with index prime to $q$.
Bibliography: 9 titles.

UDC: 511.61

MSC: Primary 10D20; Secondary 32N10, 20H10, 30A58

Received: 17.04.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 38:3, 335–363

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025