RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 7, Pages 93–106 (Mi sm246)

This article is cited in 28 papers

Boundedness of the Hardy and the Hardy–Littlewood operators in the spaces $\operatorname {Re}H^1$ and $\mathrm {BMO}$

B. I. Golubov

Moscow Institute of Physics and Technology

Abstract: The boundedness of the Hardy operator $\mathscr H$ and the Hardy–Littlewood operator $\mathscr B$ are established, respectively, in $\operatorname {Re}H^1$ and the space $\text {\textrm {BMO}}$ of functions of bounded mean oscillation on the real axis $\mathbb R$. Here the space $\operatorname {Re}H^1$ is isomorphic to the Hardy space of single-valued analytic functions $F(z)$ in the upper half-plane satisfying condition (0.3), the Hardy–Littlewood operator $\mathscr B$ is defined in $\mathbb R$ by equality (0.2), and the Hardy operator $\mathscr H$ is defined in $\mathbb R_+$ by equality (0.1) and its value $\mathscr Hf$ is continued to $\mathbb R_-$ as an even (odd) function if the function $f$ is even (odd). For an arbitrary function $f$ one sets $\mathscr H(f)=\mathscr H(f_+)+\mathscr H(f_-)$, where $f_+$ is the even and $f_-$ is the odd component of $f$.

UDC: 517.518.2

MSC: 46E30, 47B38, 47G10

Received: 21.05.1996

DOI: 10.4213/sm246


 English version:
Sbornik: Mathematics, 1997, 188:7, 1041–1054

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025